Theoretical Studies of the EPR g Factors and Optical Spectra for Tetragonal Ce³⁺ Centers in CaF₂ and SrF₂ Crystals

Hui-Ning Dong^{a,b}, Shao-Yi Wu^{b,c}, and Wen-Chen Zheng^{b,c}

^a Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China
^b Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwenchen@netease.com

Z. Naturforsch. **57 a,** 753–756 (2002); received April 2, 2002

By using the irreducible tensor operator technique, the complete energy matrix including the admixture between J = 7/2 and J = 5/2 manifolds and the covalency reduction effect for 4f ion in tetragonal symmetry is established. Based on this, the electron paramagnetic resonance (EPR) g factors for the tetragonal Ce^{3+} centers in CaF_2 and SrF_2 crystals are reasonably explained and some levels of the J = 5/2 manifold for these centres are estimated. The results are discussed.

Key words: Crystal- and Ligand-field Theory; Electron Paramagnetic Resonance (EPR); Optical Spectra; Ce³⁺; CaF₂; SrF₂.